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Abstract

The low-lying and populous Vietnamese Mekong delta is rapidly losing elevation due to accelerating
subsidence rates, primarily caused by increasing groundwater extraction. This strongly increases the
delta’s vulnerability to flooding, salinization, coastal erosion and, ultimately, threatens its nearly

18 million inhabitants with permanent inundation. We present projections of extraction-induced
subsidence and consequent delta elevation loss for this century following six mitigation and non-
mitigation extraction scenarios using a 3D hydrogeological model with a coupled geotechnical
module. Our results reveal the long-term physically response of the aquifer system following different
groundwater extraction pathways and show the potential of the hydrogeological system to recover.
When groundwater extraction is allowed to increase continuously, as it did over the past decades,
extraction-induced subsidence has the potential to drown the Mekong delta single-handedly before
the end of the century. Our quantifications also disclose the mitigation potential to reduce subsidence
by limiting groundwater exploitation and hereby limiting future elevation loss. However, the window
to mitigate is rapidly closing as large parts of the lowly elevated delta plain may already fall below sea
level in the coming decades. Failure to mitigate groundwater extraction-induced subsidence may
result in mass displacement of millions of people and could severely affect regional food security as the
food producing capacity of the delta may collapse.

Introduction

The world’s third largest delta, the populous and low-lying Mekong delta in Vietnam is facing increased river
flooding (Kuenzer et al 2013), decreased sediment delivery (Kummu et al 2007, Xue et al 2011, Kondolf et al
2014, Darby et al 2016, Kondolf et al 2018), coastal erosion (Anthony et al 2015) and salinization (Renaud et al
2015, Smajgl et al 2015, Eslami et al 2019). On top of that, like many other deltas in the world (Syvitski et al 2009,
Nicholls and Cazenave 2010), the Mekong delta experiences accelerating rates of relative sea-level rise, the
combined effect of absolute sea-level rise and land subsidence. As the Mekong delta has one of the lowest delta
plains in the world, on average only ~0.8 m above local m.s.1. (Minderhoud et al 2019a), relative sea-level rise
threatens the delta’s nearly 18 million inhabitants and its important economic function as an environment for
agri- and aquaculture production vital to South-East Asia’s food production. Land subsidence is the main source
of relative sea-level rise in the Mekong delta and is caused by various driving processes: i.e. natural processes like
tectonics and natural compaction of the Holocene sediments (Zoccarato et al 2018) and human-induced
processes driven by amongst others groundwater extraction (Erban et al 2014, Minderhoud et al 2017), drainage
of shallow sediments and loading by buildings and infrastructure (Minderhoud et al 2018). The change of
Vietnam to an open-market economy in 1986 (Seto 2011) was the onset of large-scale groundwater extraction in
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the Mekong delta that triggered extraction-induced subsidence (Minderhoud et al 2017). In the decades that
followed, groundwater extraction steadily increased, providing high-quality fresh water to meet the growing
agricultural, industrial and domestic demand that fueled the rapid growing economy (Wagner et al 2012). As a
result, extraction-induced subsidence has accelerated over the past decades to rates exceeding 25 mm yr~ ' in
certain areas, making it at present the main contributor of delta-wide subsidence in the Mekong delta
(Minderhoud et al 2017).

With its low elevation and accelerating sea-level rise, the Mekong delta is on the verge of a tipping point and
delta management choices, including policy decisions on groundwater use, will shape the future of the delta.
Developing and implementation of integrated delta policies aimed to safeguard the delta for future generations
are more important than ever before and require detailed quantifications of potential future subsidence. In
contrast to subsidence caused by natural processes, e.g. natural sediment compaction or tectonics, which cannot
be mitigated, extraction-induced subsidence can be targeted for mitigation in order to reduce subsidence rate
and future delta-elevation loss. Until now, future projections of extraction-induced subsidence were solely based
on linear extrapolations of past or present subsidence rates, however, these are unable to capture, for example,
the influence of mitigation measures. Furthermore, subsidence induced by groundwater extraction is a non-
linear process that can exhibit delayed responses. For example, it can take years until the effect of a change in
hydraulic head (i.e. water level in an aquifer) in the aquifer-system, which drives extraction-induced subsidence,
is fully expressed (Galloway and Burbey 2011, Isotton et al 2015). This means that subsidence can still happen
well after groundwater extraction has stopped and hydraulic heads are rising again. It is vital to gain insights in
these longer-term processes and effects to assess the impacts of future groundwater extraction on subsidence of
deltas and coastal systems facing high rates of relative sea-level rise as a result of groundwater overexploitation.
In this paper, we aim to study long-term, hydrogeological and geotechnical behavior of the Mekong delta’s
aquifer system and to provide the first process-based quantification of possible future groundwater extraction
on delta-wide subsidence to support informed decision-making in the delta.

Recent research resulted in the first delta-wide 3D hydrogeological model, coupled to a geotechnical module
of the Mekong delta (Minderhoud ef al 2017). This model enabled process-based modelling of groundwater flow
and compaction of the delta’s multi-aquifer system. To enable modeling of future groundwater extraction-
induced subsidence, we advanced this model further and developed six mitigation and non-mitigation scenarios
focused on hydraulic head development following different groundwater extraction pathways until 2100. These
scenarios reveal the long-term physical behavior of the entire delta and provide valuable insights on recharge and
recovery potential of the aquifer system. Furthermore, our results provide the first non-linear, process-based
quantitative estimates of potential future extraction-induced subsidence for the Mekong delta. Their potential
consequences for future elevation of the delta are presented in spatially explicit maps using a vertically high
resolution elevation model of the Mekong delta (Minderhoud et al 2019b). The results quantify the considerable
impact that mitigation efforts, focused on the reduction of groundwater extraction, may have on reducing future
elevation loss. We found that the window for mitigation to keep the delta elevated above sea level is rapidly
closing, and the effectiveness of policy implementation on groundwater-extraction will determine the future of
this low-lying mega-delta. These new insights are relevant for decision makers in the Mekong delta and
demonstrate the impact of groundwater extraction and mitigation potential on delta subsidence for deltas and
coastal plains in other places on Earth.

Methods

Groundwater and subsidence model

We used an extended and updated version of the 3D hydrogeological groundwater model of the Mekong delta
developed by Minderhoud et al (2017) to model scenarios of future groundwater extraction. Originally, this
hydrogeological model was used to model groundwater flow for the period 1991-2015 using the MODFLOW-
based environment iMOD (Vermeulen 2006, Vermeulen et al 2018). The 3D hydrogeological representation of
the delta’s multi-aquifer system was created using the iMOD SolidTool (Vermeulen et al 2018) by interpolating
95 borehole logs in ten cross-sections. The model distinguishes the seven main hydrogeological units
determined by the Division of Geological Mapping for the South of Vietnam (DGMS 2004), each consisting of
an aquifer and an overlying aquitard. Each aquifer and aquitard was modeled explicitly with a horizonal
resolution of I x 1km?. The phreatic top layer at the delta system was represented by an two meter thick model
layer overlying the multi-aquifer system. The surface elevation of the delta was based on a digital elevation model
derived from topographical elevation data for the Mekong delta (Minderhoud et al 2019b) and supplemented
with Shuttle Radar Topography Mission (SRTM) elevation data for areas outside the delta (For additional details
on the 3D hydrogeological model see Supporting Information (SI), figure S.1 and table S.1 is available online at
stacks.iop.org/ERC/2/011005/mmedia). The hydrogeological model parameters were calibrated using
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measurements of hydraulic head throughout the delta. Variable density groundwater flow (e.g. the effect of
saline water) is not included in the model. We extended the simulation period of the model to 1991-2100 to
evaluate of future groundwater extraction scenarios and corresponding extraction-induced subsidence.
Furthermore, we improved the model by explicitly including the surface water network of the Mekong delta.

Adding surface water network

The surface water system of the Mekong delta consists of a dense network of natural river branches, canals and
tidal creeks. In the previous version of the model the interaction with the surface water system was modeled
through a constant drain at the delta surface, but the individual Mekong river channels and the extensive canal
system were not explicitly included in the model. As a result, the modelled hydraulic heads in confined aquifers
close to large rivers showed a mismatch with the observed hydraulic heads, as the modeled recharge at these
locations was too low (also discussed in Minderhoud et al 2017). To use the model for future predictions and
simulate groundwater dynamics over more than a century, accurate modeling of groundwater recharge is
essential as small mismatches cumulate to large quantities over time. Therefore, we updated the model by
explicitly including the surface water system of the Mekong delta as boundary condition to improve modeled
recharge of river water to the aquifer system. We divided input data on the surface water system into four
categories which are (1) main river channels, (2) secondary river channels, (3) main canals and (4) secondary
canals. Average width and depth estimates for each category were used to determine river depth and to estimate
bed conductance (figure S.2). River stage measurements from 1999 to 2010 were supplied by the Division of
Water Resources Planning and Investigation for the South of Vietnam (DWRPIS) from 39 locations in the main
and secondary rivers (Bui et al 2013). These measurements were interpolated to derive average annual river stage
for the entire delta (figure S.2). Implementation of the surface water system into the model resulted in an
improved modeling of surface water-groundwater interaction. Moreover, it increased the modeled recharge of
confined aquifers in places where river channels cut through the Holocene aquitard, a phenomenon also
observed in hydraulic head measurements. As a result, the overall mean correlation coefficient () between
observed and modeled hydraulic heads in the Mekong delta for the period 2000-2015 improved from 0.69 to
0.73 by modeling the surface water system explicitly.

Subsidence calculations

We calculated subsidence as a result of aquifer-system compaction following decreases in hydraulic head (i.e.
decreasing pressure) using a one-way coupled, geotechnical subsidence module called SUB-CR (i.e. the
hydrogeological schematization does not change or compress during the modeling period). We applied the so-
called abc model, in which a (recompression or swelling constant) accounts for the elastic compression, b
(compression constant) and ¢ (secondary compression constant) for the viscoplastic compression (Den

Haan 1994). This model determines natural strain (i.e. degree of compression) based on the isotach concept
(Suklje 1957, Bjerrum 1967) as a function of effective stress and intrinsic time using the abc constants. The model
only considers vertical deformation. The hydrological effect of viscous compression, which tends to increase
pore pressure and therefore hydraulic head as water is squeezed from a compressing laying, was set to zero as the
model was calibrated without this budget term. The parametrization of the abc constants was adopted from
Minderhoud et al (2017) (table S.2). Apart from the abc constants, the modeling of secondary compression also
depends on the overconsolidation ratio (OCR) which is described as follows:

OCR =o0',/0’ (D

where o/, is the initial pre-consolidation stress and ¢’ the momentary effective stress. A lower OCR value results
in higher rates of secondary compression. For the Mekong delta only limited data is available to constrain OCRs.
Hoang et al (2016) found an average OCR value of 1.6 for clayey deposits in the Mekong delta and Thoang and
Giao (2015) reported a similar value for medium to stiff clays in HCMC province. Validation of modeled
subsidence in the Mekong delta with InSAR-derived subsidence rates from 2006-2010 (Erban et al 2014)
revealed an almost similar OCR value of 1.63 to provide the best fit (Minderhoud et al 2017). We applied the
same validation after updating the model (section S1.1.1 and S1.2) and the OCR value that provided the best fit
with the InSAR-derived subsidence rates remains 1.63. Therefore, we also use this OCR value to calculate the
best estimate subsidence values for this study. To provide a range of subsidence calculations from least
conservative (very weak sediments) to most conservative estimates (rigid sediment properties) we vary the OCR
valueby0.1 (i.e. 1.53-1.73). We selected a slightly narrower OCR range than used by Minderhoud et al (2017), as
it provides modeling results that were better supported by the InSAR-based subsidence rate observations
providing assumably a more realistic range (section S.3.1). The presented results of average modeled cumulative
subsidence and subsidence rates for the different extraction scenarios are based on the best estimate model
(OCR = 1.63) and specifically calculated for the Mekong delta (delineated in figure 1). Furthermore, as the
extraction data does not cover the entire Mekong delta, results of average delta-wide subsidence presented in this
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Figure 1. Location of the Vietnamese Mekong delta in South-East Asia. Source satellite imagery: ESRI, DigitalGlobe, GeoEye,
Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.

paper were calculated based on areas in the Mekong delta within a 5 km radius of a modeled extraction
(figure S.4).

Updating past groundwater extraction

In the previous model version the growth of unregistered extraction volume was estimated to be similar to the
growth of the registered wells volume (Minderhoud et al 2017). The hydrogeological modeling results showed
that throughout the delta the modeled hydraulic head decline during the start of the modeling period slightly
underestimated measured hydraulic head declines and overestimated hydraulic head declines at the end of the
original modeling period towards the present. For modelling future development of hydraulic head declines and
subsidence, the overestimation of hydraulic head decline at the end of the modeling period (~2010-2015) is
problematic as extrapolation into the future increases such initially small overestimations further. To address
this limit, we based the annual growth in unregistered extraction volume directly on measured hydraulic head
decline in the confined aquifers. This alternative approach follows the assumption that an increase in measured
hydraulic head drop in an aquifer is linked to an increase in extracted volume. It was applied for all unregistered
extractions in the Mekong delta and Ho Chi Minh city (HCMC) province during the modeling period

1991-2011 (section S.5 for a detailed description of the approach and modelled annual groundwater extraction).
For the period 0f 2011-2018, an annual growth of 2.5% was simulated for the Mekong delta based on estimates
of extraction increase by the DWRPIS. For HCMC province, extraction gradually stabilized following the water
actin 2007 (HCMC 2007). The update of the annual growth of unregistered extractions resulted in an improved
fit with the model and the observed hydraulic head decline (figure S.6) and the model no longer overestimates
the decline towards the present. Compared to the previous model version, the overall mean correlation
coefficient (r*) between observed and modeled hydraulic heads in the Mekong delta for the period 2000-2015
improved from 0.69 to 0.75 with updating past extraction. Combined with implementing the surface water
system in the model (section S1.1.1), the performance of the model increased further (** = 0.78). By improving
the modeled extraction volume for the past, the modeled extracted volume provides a more realistic starting
value for the modeling of future extraction pathways.
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Figure 2. Total modeled daily groundwater extraction (million m®) from 1991 to 2100 in the Mekong delta for each pathway after
2018 following the non- and mitigation scenarios.

Table 1. Modeled scenarios of groundwater extraction pathways from 2018 until 2100. The percentual annual change in extracted volume
was applied to all wells included in the model.

Scenario Extraction pathways
Non-mitigation ~ B2: Extreme extraction increase Steady annual increase: 4% of the 2018 volume
B1: Moderate extraction Steady annual increase: 2% of the 2018 volume
increase
Mitigation M1 : Stable extraction Stabilizing extraction, no increase after 2020: 2019: 1.5%; 2020: 0.5%; after 2020:
stable extraction
M2 : Stable groundwater levels Gradual reduction of extracted volume by 50% of the 2018 volume: 2018—2028:
Annual reduction of 5%. After 2028: Stable extraction
M3 : Recovery of groundwater Gradual reduction of extracted volume by 75% of the 2018 volume: 2018-2033:
levels Annual reduction of 5%. After 2033: stable
M4 : Full extraction stop Complete stop of all extraction after 2018

Groundwater extraction scenarios

The updated and extended model enables to evaluate the future hydraulic head evolution and consequent
aquifer-system compaction of the Mekong delta. We developed six scenarios to simulate different possible
pathways of future evolution of total extracted volume in the Mekong delta from 2019 to 2100 under various
decrees of mitigation (table 1, figure 2). The pathways were developed either focused directly on the amount of
groundwater extracted in the delta or, indirectly, on the effect of extraction, i.e. hydraulic head development
over time. This second pathway type was developed because maintaining certain hydraulic heads can be
implemented as mitigation measure. This is, for example, the case in HCMC where, following the water act in
2007, groundwater extraction is no longer allowed when hydraulic head in an aquifer falls below a certain
predetermined level (HCMC 2007).

Two non-mitigation scenarios follow pathways in which the amount of groundwater extraction continues to
grow: scenario B1 represents a future in which groundwater extraction continues to increase moderately (annual
increase of 2% of the 2018 volume; 55 x 10 m” daily extraction) and scenario B2 represents a worst case
scenario in which extraction increases double this amount (annual increase of 4% of the 2018 volume;

110 x 10° m’ daily extraction).

Four mitigation scenarios follow groundwater extraction pathways aiming to limit extraction growth and/
or reduce total extracted volume. Scenario M1, M2 and M3 have been developed in a way that they could
represent realistic cases by incorporating a transition period during which the extracted volume is gradually
stabilized or reduced. This period is needed to reduce groundwater use and to create the infrastructure needed to
provide for alternative fresh water sources to meet the fresh water demand. Mitigation scenario M1 represents a
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stabilization of the extracted volume, allowing limited volume growth until 2020 to realistically incorporate the
effects of new wells that are already licensed and currently being constructed. After 2020 there is no further
increase and the total extracted volume (~2.8 million m” daily) remains stable until 2100. Mitigation scenario
M2 focuses on the stabilization of hydraulic heads and aims to maintain present hydraulic heads until 2100. In
this scenario the modeled natural recharge of the delta system equals the amount of groundwater extracted from
the subsurface and this requires a reduction of groundwater extraction of 50% of the 2018 volume (~1.4 million
m’ daily). Scenario M3 investigates a situation in which the recovery of groundwater levels is the main focus but
groundwater is still extracted in small quantities. In this scenarios groundwater extraction is reduced with 75%
since 2018 (~0.7 million m” daily), to allow recovery of the hydraulic head through natural recharge. Scenario
M4 is a theoretical case to investigate the response of the Mekong delta system after an abrupt stop of all
extraction after 2018. This scenario was developed to quantify the maximum recovery rate of the hydraulic heads
in the aquifer system and the minimum amount of future subsidence that will inevitably happen as inheritance
of three decades of hydraulic head lowering.

In each scenario the groundwater extraction pathway was described as a percentual change in total
extraction volume compared to the total volume of groundwater extraction of 2018 (table 1). This annual
change was simulated in all existing wells in the model located in both the Mekong delta and HCMC province.
No new wells were added nor was there spatial variability in extraction growth included. For each scenario, the
hydrogeological response of the groundwater system was modeled and the amount of extraction-induced
subsidence quantified until 2100.

Projections of future elevation

We created spatially explicit projections of future delta elevation to local mean sea level by combining the
estimates of potential extraction-induced subsidence for different scenarios with climate-change driven sea-
level rise and a vertically high resolution Digital Elevation Model (DEM) of the Mekong delta. We used the
recently available DEM of the Mekong delta, “Topo DEM’ (Minderhoud et al 2019; Minderhoud et al 2019),
which has a decimal vertical accuracy of elevation relative to local mean sea level. To account for the effect of
climate-change driven sea-level rise, we use the median projection of absolute sea-level rise under the mid-range
RCP 4.5 (Representative Concentration Pathway, Moss et al 2010) which is 53 cm by the end of this century
(Jackson and Jevrejeva 2016, Jevrejeva et al 2016). For extraction-induced subsidence we use three potentially
realistic scenarios of future groundwater extraction: (B1) moderate extraction increase, (M1) stable groundwater
extraction volumes, (M3) strongly reduced groundwater extraction and recovery of groundwater levels. Two
other important factors that determine future elevation in the Mekong delta up to several centimeters change
per year are (1) elevation loss as a results of natural sediment compaction (Zoccarato et al 2018) and (2) elevation
gain through deposition of new sediments (Hung et al 2014, Lovelock et al 2015). As both processes have not yet
been quantified for all locations in the Mekong delta, for this analysis we follow the assumption that they
counterbalance each other in term of net elevation change over time, which also seems to have been the case in
the past when the Holocene delta plain was formed (Zoccarato et al 2018).

Results

Hydrogeological evolution following groundwater extraction pathways

We developed six scenarios to simulate different possible pathways of future evolution of total extracted volume
in the Mekong delta from 2019 to 2100 under various decrees of mitigation (figure 2; table 1). Future average
delta-wide hydraulic head evolution for each scenario is presented in figure 3. The average hydraulic head is an
equally weighted average of the six confined aquifers (Upper Pleistocene to Upper Miocene) in the subsurface.
For both non-mitigation scenarios (B1 and B2), in which groundwater extraction continues to increase, the
average hydraulic head in the Mekong delta continues to drop throughout the modelling period to —30 min
scenario B1 and to almost —50 m in scenario B2 by 2100. When the extraction volume stabilizes after 2020
(scenario M1), the average hydraulic head continues to drop until it gradually stabilizes towards the end of the
century at alevel twice the present-day hydraulic head level below 0 meter (—13.5 m). Scenario M2 and M3 show
both a short decreasing drop in average hydraulic head, after 2018 followed by a recovery of the heads in the
decades afterwards. Scenario M2 represents the extraction pathway aiming to stabilize the average hydraulic
head atits 2018 level of —6.5 m, which it does after a short dip and recovery. In the recovery scenario (M3), the
hydraulic heads recover towards a level half the average hydraulic head in 2018 (—3.2 m in 2100, SI table S.3).
The full extraction stop scenario (M4) shows a recovery of the head to levels slightly above mean sea level by the
end of the modeling period, comparable to the hydrogeological situation in the delta at the end of the 20th
century before the excessive exploitation of the groundwater system had started. The average hydraulic head
recovered to 0 meter by the year 2077, comparable to the situation in the deltain 1997.
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Figure 3. Average hydraulic head evolution in the Mekong delta under different groundwater extraction scenarios. The hydraulic
heads are equally weighted delta-wide averages of the six confined aquifers.
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Figure 4. Modeled average hydraulic head of the confined aquifers under different groundwater extraction scenarios for the Mekong
delta.

The above hydraulic head values are delta-wide, multi-aquifer averages. Hydraulic head evolution in each
separate aquifer is dependent on its specific balance between extraction and recharge, which is also spatially
variable. The maps of average hydraulic head evolution for the different extraction pathways (figure 4) show the
spatial variability in the Mekong delta. In general, aquifer recharge is higher in the central and northern part of
the Mekong delta, where the presence of large rivers in combination with a thinner Holocene aquitard (less low-
permeable clays at the delta surface) enable more recharge when compared to the southern part of the delta. This
becomes especially visible in scenario M2 as hydraulic heads in the central and northern part of the delta slightly
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Figure 5. The evolution of subsidence rate (left) and cumulative subsidence (right) in the Mekong delta until 2100 following different
groundwater extraction pathways. Cumulative subsidence is calculated from 2018 onwards. The quantifications are based on the best
estimate model.

increase towards the end of the century, while in the Ca Mau peninsula in the south, the heads slightly decrease
compared to the 2018 levels.

Modeled extraction-induced subsidence

Future extraction-induced subsidence

The evolution of subsidence rates and cumulative subsidence since 2018 is modeled until the end of the 21th
century following the six groundwater extraction pathways. Figure 5 shows the spatial subsidence patterns of the
best estimate model projections for the Mekong deltaand HCMC province. The development of the average
Mekong delta-wide subsidence rates and cumulative subsidence for each scenario during the period 2000-2100
are shown respectively, in figures 6 and 7.

In the two non-mitigation scenarios the total volume of groundwater extraction continues to increase and as
aresult subsidence rates remain high throughout the 21st century. In scenario B2, the delta-wide average
subsidence rate keeps increasing until 2078 at 13.1 mm yr~ ' (12.1-13.6 mm yr ™' for the most conservative and
least conservative models) (figure 6). At the end of the century, the average delta-wide subsidence rate is 12.9
(12.3-13.1)mmyr ' with certain areas in the delta experiencing rates up to 45 mm yr_ ' (see SI table S.5 for
highest modeled subsidence rates). Cumulatively, the delta subsides on average 100 (86—110) cm during the
period 2018-2100 in scenario B2 (figure 7). In scenario B1, the average delta-wide subsidence rate increases from
2018 towards 2023 t0 8.9 (5.84-11.9) mm yr ' followed by a gradual decline in average rate towards 7.6 (7.0-7.9)
mmyr ' in 2100 with highest rates going up to 20 mm yr~'. In scenario B1, during the 21st century following
2018, the delta subsides on average a total of 68 (55-70) cm.

In all four mitigation scenarios in which groundwater extraction is kept stable or decreases in the future, the
subsidence rates also decrease. The largest differences between the mitigation scenarios in term of subsidence rates can
be observed in the coming first decades (figure 6). The largest abrupt change in subsidence rate happens in scenario
M4, where subsidence rates drop sharply from 8.9 (5.5-12.5) to 1.6 (—1.3-4.9) mm yr_ ' as a result of the abrupt stop
of all groundwater extraction. In 2050 average modeled subsidence rates of the Mekong delta for scenario M1 to M4
are respectively, 5.0 (3.5-5.9) mmyr ', 2.9 (1.7-3.7) mmyr ', 1.9 (1.0-2.7) mmyr ', 1.6 (0.7-2.3) mmyr ', while
maximum modeled rates for each of the respected scenarios are 11.1 (10.2-11.7) mmyr ™', 4.6 (3.6-6.1) mmyr ',

8
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Figure 7. Average cumulative subsidence of the Mekong delta for different groundwater extraction pathways since 2018. Colored lines
give the best estimate model result and the uncertainty range shows the modeling results of the least and most conservative models.
For visualization purpose, the range of B1, M2 and M3 is not shown on the left panel. The average was calculated for the entire aquifer
system of the Mekong delta within 5 km radius of modeled extraction (SI figure S4b). The range of cumulative absolute sea-level rise
(SLR) in the right panel is based on the RCP 2.6 and 8.5 climate change scenarios (Church et al 2013).

3.4(1.7-4.8)mmyr ',2.9(1.44.3)mmyr ' (StableS.5). Towards the end of the century, the subsidence rates all
gradually converge towards each other and rates in 2100 range from 1.2-2.5 (0.7-2.7) mmyr ™' for all mitigation
scenarios, with maximum rates ranging from 2.2—4.4 (1.3—4.6) mmyr~'. Cumulatively, the mitigation scenarios
result in relatively large differences. By 2100, the Mekong delta experiences, in respectively scenario M1 to M4, on
average a cumulative subsidence of 39 (28—48) cm, 25 (15-33) cm, 19 (10-27) and 12 (4-18) cm since 2018. Spatially,
subsidence rates vary as a result of location and depth of extraction wells and extracted volume in relation to the
subsurface architecture and composition, which determines local recharge rates and compaction potential. Higher
subsidence rates are found in areas with larger extraction volumes and low recharge rates, thus experiencing larger
and longer sustained drawdowns in hydraulic head (figure 5). In general, rates show an increasing trend from the apex
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of the delta in the northwest towards the coastline in the southeast as the aquifer system thickens in this direction,
which increases its total compressibility potential.

Figures 6 and 7 also show the range in projections of absolute sea-level rise, caused by accelerated thermal
expansion of seawater and melting of ice sheets as a result of global warming, using the RCP 2.6 and 8.5 climate
change scenarios (Church et al 2013). At present, modeled extraction-induced subsidence rates (delta-wide
average: 9 (5-13)mmyr ', locally up to 39 (33-42) mmyr ') are much larger than rates of present absolute sea-
level rise (3—4 mm yr~'). During this century, when groundwater extraction continues to increase, scenario B1
and B2, the extraction-induced subsidence rates will remain higher or, at some point, equal to rates of absolute
sea-level rise. In case of mitigation (scenario M1-M3) rates will gradually decrease and at some point become less
than climate-change driven sea-level rise.

Discussion

Limitations on modeling the hydrology and subsidence of the Mekong delta aquifer system

Future change in total groundwater extraction volume was modeled based on the delta-wide extraction database
of the DWRPIS which is, at present, the best available data on groundwater extraction available for the delta.
Uncertainties in extracted volume and missing extractions may affect the modeled spatial patterns of hydraulic
head in the aquifers (discussed in Minderhoud et al 2017). We modeled the changes in extracted volume of each
extraction pathway uniformly over the delta with the aim to investigate the potential future behavior of the
aquifer system. In reality, we expect changes in future extraction to be much more location-specific and
temporally variable, as they are influenced by a complex interaction between groundwater governance,
legislation and law enforcement which can varylocally in the delta (Ha et al 2018). Furthermore, also local
differences in access to good quality surface water, socio-economical situation, technical capability and land-use
practices, which, in turn, may be influenced by physical processes and feedback-mechanisms, e.g. ongoing
subsidence increasing salinization, will determine future groundwater use. Our modelling approach paves the
road to investigate more complex and realistic scenarios that include abovementioned factors.

Modeled extraction-induced subsidence is affected by uncertainties in the hydrogeological model and
geotechnical parameterization (discussed in Minderhoud et al 2017). The difference between modeled
subsidence rates for the most and least conservative geotechnical parameterization becomes smaller towards the
end of the modeling period (figure 6), which shows that the relative influence of initial overconsolidation ratio
uncertainty decreases in time (Suklje 1957). While geotechnical model uncertainty decreases, the influence on
modeled subsidence of the groundwater extraction pathways increases. Even though locally uncertainties in
modeled extraction-induced subsidence may be considerable, on the scale of the entire delta our results do
provide a first indicative, process-based quantification on how the aquifer-system may respond to different
groundwater extraction pathways in the 21st century.

Response of the aquifer system to future groundwater extraction

The evolution of the hydrogeological situation in the aquifer system of the Mekong delta will be determined by
the extraction pathway followed. When the amount of groundwater extraction in the Mekong delta remains
stable after 2020 (scenario M1) or continues to increase further into the future (scenario B1 and B2), aquifer
system depletion will continue as well, resulting in continuous hydraulic head drop. In scenario B2 the average
hydraulic head in the delta will drop almost to —50 m by the end of the century. Although we consider thisas a
most extreme scenario, drawdowns of this magnitude in confined aquifers are not uncommon and have been
reported throughout the world, a.o. Bangkok (40-50 m; Phien-Wej et al 2006), Mexico city (25 m, Ortiz-
Zamora and Ortega-Guerrero 2010), San Joaquin Valley, USA (up to 45 m, Sneed et al 2013), Shanghai (30 m, Ye
etal 2016) and Tokio (40 m, Sato et al 2006). Moreover, also nearby Ho Chi Minh city drawdowns more than 30
meter have been measured between 1994 and 2015. Although drawdowns are site-specific and depend on many
factors like aquifers and aquitards size and storage capacity, groundwater extraction and recharge rate, physically
the hydrogeological situation modeled in scenario B2 is possible.

The modeling results of the mitigation scenarios show the potential of the Mekong delta’s aquifer system to
recover from past and future hydraulic head drops when extraction is reduced or stopped. They also reveal the
amount of present overexploitation. Currently, the amount of groundwater extraction in the delta is about twice
the amount of recharge. A reduction of extraction by 50% will result in a stabilization of average hydraulic head
atits present level (scenario M2), indicating that the extracted volume equals the amount of aquifer recharge by
infiltration of precipitation, surface water and intrusion of sea water. Maximum recovery of the hydraulic heads
in the Mekong delta’s aquifer system is achieved when extraction is completely stopped (scenario M4). Under
these optimal circumstances, it will take the aquifer system of the Mekong delta ~60 years to recover from the
hydraulic head drop caused by groundwater extraction during the past ~20 years. This demonstrates the low
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recharge rate of the delta’s aquifer system, which is likely caused by the low permeable Holocene deposits at the
delta surface (Minderhoud et al 2017). This means that even after a complete extraction stop, past groundwater
overexploitation will still have a continued effect on the hydrogeological situation of the aquifer system for
future decades.

Past hydraulic head declines in the aquifer system have triggered aquifer-system compaction which led to
subsidence of the delta surface (Minderhoud et al 2017). This process of aquifer-system compaction is sluggish
as it takes time for the decrease in pore pressure to propagate into the low-permeable and compressible
aquitards, causing a delay in primary compression. Secondary compression, which is time-dependent, creates
additional delayed compression of the aquifer-system which can continue for decades after it is triggered. In
combination with the slow recharge rate of the delta’s aquifer system, this means that even when extraction is
completely stopped (scenario M4), the delta will continue to subside, amounting to an average cumulative
extraction-induced subsidence of 12 (4—18) cm by the end of the 21st century. This amount of subsidence is the
inevitable inheritance of past groundwater overexploitation. In reality groundwater extraction will not stop after
2018, therefore the true amount of future extraction-induced subsidence will be higher. How much higher will
be determined by the extraction pathway.

Future of the Mekong delta

Consequences for delta elevation and relative sea-level rise

Extraction-induced subsidence results in elevation loss at the delta surface. The magnitude of the impact of
elevation loss on a delta’s future sustainability and the livelihood of its inhabitants depends, to a large extent, by
its elevation above sea level. Figure 8 shows the area in percentage of the Mekong delta plain that will experience
a certain amount of cumulative subsidence for each extraction pathway in 2050 and 2100 and the average delta
plain elevation of the Mekong delta (~0.8 m a.m.s.l., Minderhoud et al 2019a, 2019b). It becomes evident that if
groundwater extraction continues to increase in the future (scenario B1 and B2), extraction-induced subsidence
alone may cause large parts of the delta to lose all elevation a.m.s.1. before the end of the century. In case of
groundwater extraction mitigation, cumulative extraction-induced subsidence will cause less but still
considerable amounts of elevation loss. The minimum elevation loss that the delta will experience by the end of
the century, as a result of inevitable aquifer-system compaction (scenario M4), equals ~15% (5%—22%) of the
present average Mekong delta plain elevation a.m.s.l. Beside extraction-induced subsidence, the delta will also
lose elevation a.m.s.l. as the sea level itself is rising. When we correct future delta elevation a.m.s.l. with
projections of absolute sea-level rise (Church efal 2013), the percentual area that loses on average all elevation
above sea level by extraction-induced subsidence considerably larger (supplementary figure S.7). Only when
future extraction-induced subsidence is mitigated by strongly reducing groundwater extraction and rates of
absolute sea-level rise follow a moderate pathway, the majority of the delta may still be elevated above sea level by
the end of the century.

By combining the results of three plausible groundwater extraction pathways (B1, M1 and M4) witha
moderate estimate of absolute sea-level rise and a high resolution vertical elevation model of the Mekong delta
(Minderhoud et al 2019), the effects of different extraction scenarios are made spatially explicitly in maps
projecting future elevation to mean sea level (figure 8). The maps reveal that considerable parts of the Mekong
delta will likely fall below sea level during the coming century, even under the M3 scenario. In particular the low-
lying SW part of the delta will fall below sea level already in the course of this century, regardless the considered
scenario. The extent of those parts of the delta that remain above sea level by the end of the century varies from
32% in B1 to 44% in M1 and 57% in M3, showing the large potential of mitigation to reduced extraction-
induced subsidence.

Beside extraction-induced subsidence and absolute sea-level rise, relative sea-level rise in the delta is also
determined by other subsidence processes, like tectonics, natural compaction of Holocene sediments, which can
amount up to rates of several cm yr~ ' in the Mekong delta (Zoccarato et al 2018), drainage of surface water and
loading by buildings and infrastructure (Minderhoud et al 2018). As figure 9 shows, whether and when a certain
part of the delta will fall below sea level is location-specific and dependent on local conditions of relative sea-level
rise and surface elevation. On top of that, sedimentation of clastic and organic sediments on the delta surface is
the natural mechanism of a delta to keep up with relative sea-level rise and can even result in elevation gain. This
is the case in some areas along the Mekong delta’s coastline, hosting pristine mangrove forests with abundant
sediment availability (Lovelock et al 2015), however not for other areas in the delta. The sediment supply to the
Mekong delta is declining by upstream dam construction (Kummu et al 2007, Kondolf et al 2018), sand mining
(Brunier et al 2014, Anthony et al 2015) and improved flood control in the delta which hampers the propagation
of flood water and therefore decreases the delivery of new sediments (Dang et al 2016, Tran et al 2018). This
general lack of sediment-deposition at the deltas surface makes it very unlikely that sedimentation in the delta
can keep up with the high rates of relative sea-level rise, but recent policy plans to restore controlled seasonal
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Figure 8. Projections of future elevation with extraction-induced subsidence following three different extraction scenarios and
absolute sea-level rise according to the mid-range projections of SLR (median) of RCP 4.5. Elevation is in meter above mean sea-level
based on the “Topo DEM’ (Minderhoud et al 2019a, 2019b). Additional elevation loss by subsidence as a result of natural compaction
is assumed to be counterbalanced by elevation gain through deposition of new sediments. Blueish areas are below mean sea level.

flooding (van Staveren ef al 2018) may restore sedimentation and contribute to surface elevation gain in the
future.

Time for mitigation, mitigation to create time

Given its lowly elevated topography, ongoing subsidence, absolute sea-level rise and decreased sedimentation,
the Mekong delta is heading for a tipping point towards a ‘collapsed’ state (Renaud et al 2013). As the delta is
progressively losing elevation, the window for mitigation is closing rapidly. Although relative sea-level rise for
the Mekong delta is caused by more than groundwater extraction-induced subsidence, it is, at present, the
dominant factor. When and whether mitigation strategies to reduce extraction-induced subsidence are
successfully implemented, will determine, for a large extent, how long the delta will stay above sea level.
Although part of the future extraction-induced subsidence in inevitable (Scenario M4), a large part still can still
be mitigated and avoided. A strong reduction in groundwater extraction would not only allow the aquifer system
to recharge, and subsequently decrease aquifer system compaction, it would also reduce other water-related
issues, such as salt water intrusion in the aquifer system and decrease in water quality (Renaud et al 2015, Smajgl
etal2015, Eslami et al 2019). Although the best solution to reduce extraction-induced subsidence is to
immediately stop all groundwater extraction, this is realistically not an option, as people in the delta rely on
groundwater for their freshwater supply. Until alternative water sources are available, such as a piped water
supply, high quality surface water or desalinization, groundwater will continue to be used to meet the fresh water
demand. While investments are being made and infrastructure is being developed to provide an alternative fresh
water supply, implementation of smart extraction strategies can already reduce extraction-induced subsidence
while supplying fresh groundwater. For example, extraction can be relocated to areas that are less exploited,
contain less compression-prone, fine-grained sediments (i.e. less clay, more sand) and experience natural
recharge rates (e.g. close to rivers). Additionally, extraction could be concentrated in higher elevated parts of the
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delta, where subsidence is less harmful. However, such strategies only provide temporal solutions and cannot
substitute the reduction in overall groundwater use. Managed aquifer recharge (MAR) provides opportunities to
artificially stimulate the aquifer system recharge, by for example using groundwater injection wells. This may
also help to battle salt water intrusion and simultaneously creating strategic freshwater reserves in the
subsurface. All the above mentioned solutions will require fundamental changes in groundwater management
and law enforcement, availability of alternative water sources, changes in agricultural practices, and investments
in infrastructure to distribute fresh water over the delta. In November 2017, the Vietnamese Government issued
‘resolution 120’ which describes the ambition for a prosperous, sustainable and climate-resilient future of the
Mekong delta, including the aspiration to end groundwater use by the year 2100. In December 2018, the
Vietnamese Government issued degree 167 (167,/2018 /ND-CP) to restrict extraction in areas where it is causing
subsidence, pollution, salinization and depletion of groundwater resources and delineate groundwater
protection zones. While these intentions provide an optimistic outlook for the delta, our results reveal that the
available time for implementing the required changes to reduce groundwater extraction and effectively mitigate
subsidence is very limited and shorter than currently foreseen in governmental plans. The race against the clock
has started and any delay in implementation will cause the delta to lose more of its elevation above sea level,
which will increase the exposure of the nearly 18 million inhabitants to flooding, storm surges and groundwater
salinization. The food producing capacity will decrease and the costs of flood protection to prevent permanent
submersion of the delta will increase.
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